Low-Intensity Ultrasound-Induced Anti-inflammatory Effects Are Mediated by Several New Mechanisms Including Gene Induction, Immunosuppressor Cell Promotion, and Enhancement of Exosome Biogenesis and Docking
نویسندگان
چکیده
Background: Low-intensity ultrasound (LIUS) was shown to be beneficial in mitigating inflammation and facilitating tissue repair in various pathologies. Determination of the molecular mechanisms underlying the anti-inflammatory effects of LIUS allows to optimize this technique as a therapy for the treatment of malignancies and aseptic inflammatory disorders. Methods: We conducted cutting-edge database mining approaches to determine the anti-inflammatory mechanisms exerted by LIUS. Results: Our data revealed following interesting findings: (1) LIUS anti-inflammatory effects are mediated by upregulating anti-inflammatory gene expression; (2) LIUS induces the upregulation of the markers and master regulators of immunosuppressor cells including MDSCs (myeloid-derived suppressor cells), MSCs (mesenchymal stem cells), B1-B cells and Treg (regulatory T cells); (3) LIUS not only can be used as a therapeutic approach to deliver drugs packed in various structures such as nanobeads, nanospheres, polymer microspheres, and lipidosomes, but also can make use of natural membrane vesicles as small as exosomes derived from immunosuppressor cells as a novel mechanism to fulfill its anti-inflammatory effects; (4) LIUS upregulates the expression of extracellular vesicle/exosome biogenesis mediators and docking mediators; (5) Exosome-carried anti-inflammatory cytokines and anti-inflammatory microRNAs inhibit inflammation of target cells via multiple shared and specific pathways, suggesting exosome-mediated anti-inflammatory effect of LIUS feasible; and (6) LIUS-mediated physical effects on tissues may activate specific cellular sensors that activate downstream transcription factors and signaling pathways. Conclusions: Our results have provided novel insights into the mechanisms underlying anti-inflammatory effects of LIUS, and have provided guidance for the development of future novel therapeutic LIUS for cancers, inflammatory disorders, tissue regeneration and tissue repair.
منابع مشابه
P-103: Enhancement of Colonization on Mouse Spermatogonial Stem Cell by Low Intensity Ultrasound Stimulation
Background: Spermatogonial stem cells (SSCs) are the foundation of spermatogenesis. New procedure such as sound wave especially low intensity ultrasound (LIUS) can be effective on increasing the number of cells. In this study we investigated the effect of LIUS stimulation on mouse SSCs. Materials and Methods: Isolated SSCs from neonate mice cultured in DMEM culture medium with 10% fetal bovine ...
متن کاملC-terminal fragments of APP: Its neurotoxic mechanisms and involvement in gene transcription
Several lines of evidence suggest that some neurotoxicity in AD is due to proteolytic fragments of APP. In this study, we compared the potency of neurotoxicity induced by CT with that of A-beta neurotoxicity and our results showed that various CT peptide fragments (CTFs; CTF99, AICD, CTF31) caused neurotoxicity in cultured cells and primary cortical neurons, induced strong non-selective inward ...
متن کاملC-terminal fragments of APP: Its neurotoxic mechanisms and involvement in gene transcription
Several lines of evidence suggest that some neurotoxicity in AD is due to proteolytic fragments of APP. In this study, we compared the potency of neurotoxicity induced by CT with that of A-beta neurotoxicity and our results showed that various CT peptide fragments (CTFs; CTF99, AICD, CTF31) caused neurotoxicity in cultured cells and primary cortical neurons, induced strong non-selective inward ...
متن کاملMinocycline Mitigation of Tremor Syndrome and Defect of Cognitive and Balance Induced by Harmaline
Introduction: Minocycline has anti-inflammatory, anti-apoptotic, and anti-oxidant effects. Preclinical data suggest that minocycline could be beneficial for treating common neurological disorders, including Parkinson disease and multiple sclerosis. Methods: In this study, the effects of minocycline on harmaline-induced motor and cognitive impairments were studied in male Wistar rats. The rats ...
متن کاملImmunoregulatory impact of human mesenchymal-conditioned media and mesenchymal derived exosomes on monocytes
Mesenchymal stem cells (MSCs) are well known due to their immunomodulatory effect, but the exact mechanisms have not been defined. Several studies demonstrated that the exerted immunoregulatory effect of these cells could be mediated by paracrine factors to illustrate, cytokines, chemokine, and among which, extracellular vesicles are one of them to play a crucial role. Moreover, it is assumed t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017